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Overall picture:
Edge plasma impurities from plasma/wall interactions

Impurities in the edge plasma are important for power balance

Widely varying
Carbon plate length scales
MD and kinetic ~nm
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Modeling plasma-wall interactions requires
understanding complex physical and chemical processes

Carbon contamination of the plasma results from erosion of
the surface by chemical and physical sputtering.

Topographical evolution

Divertor surface processes
© electrons core plasma o
O wall material atom contamination o
.

© wall material ion o o o °
O D,T neutrals
O D.T ions o) 1omzat10n (@)

reflection ° recychng

chemical ° O o, . (redeposmon jonization
sputtering o electron
\ emission (0]
dissociation
physical
sputtering implantation re-emission
blisterin, {e}
XL (oo ®%
a‘ diffusid 1) diffusio
6) O
@
permeation radiation damage
(vacancy and interstitial clusters)

Molecular Dynamics and surface Monte Carlo simulations enable
fundamental understanding and determine required sputtering-yield data




Goal: generate table of erosion as function of many variables

Sputtering Yield Y = Species ejected from the surface

Energetic ion impacting the surface

We are calculating carbon and hydrocarbon yields similar to the MgO
example below (Zepeda-Ruiz & Srolovitz, J. Appl. Phys., 2001 &2002).

Yield as a function of:
eion/neutral type
sincident energy
sincident angle
eparticle flux
esurface temperature
esurface topography

Large number O(10°-109) of
MD simulations required — use
accelerated or rare event
methods (future).

MgO vyield

MgO sputtered by 600 eV Ar ions



Bombardment simulations at LLNL

: : H/D/T projectiles, 5-300 eV, several
MDCASK (LLNL): highly parallel, variable angles of incidence, hitting an irreducible
time Step, Potential: REBO+10ng range-l—ZBL region on the surface.

Targets: 500-40,000 C atoms, 300-600 K

Thermostat
at sides
and

bottom to
minimize
boundarX
effects

AIREBO code: original serial code (from S. Stuart) Modified to do ion bombardment.
Parallel spawning (T. Oppelstrup, LLNL) =»
one yield point (without long range+torsion terms) takes ~1.5 hours in 20 CPU’s.
(1 yield point =»2,000 runs; 500 atoms, 0.5 ps each; i.e. ~40 ms/atom/step/CPU)




We have produced an amorphous carbon MD “sample” to
model steady-state divertor surfaces with CH_
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aC:H sample with 30%-40% H content
g(r) matches published results, sp?/sp3
ratio ~60%/40% at 300 K
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100 eV D - aC:H sample, 45°, 300 K
No sputtering for this event. D gets
trapped in the amorphous sample.
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Calculation of reflection coefficients
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 Large differences between BCA (SRIM2003) and MD results.
« Smooth dependence with polar angle at low energies




Carbon sputtering yield as a function of energy

« Clear evidence of
chemical erosion

« Calculated value within
range of existing
experimental values for
H, D bombardment.

Yield is 3-8 times lower
than low energy yield
from Salonen et al.,
PRB 63 (2001) 195415,
for T>aC:H. Possible
reasons:

o different H/C ratio
(30% vs. 40%)
 Different surface
topologies give different

- First sputtering calculations above 35 eV
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Near future calculations: -

- calculation for aC:H sample with 40% H

 to evaluate role of the s

several different surfaces and re-calculate yields

urface topology, build

ejection probabilities.




Carbon sputtering yield as a function of angle
IFirst sputtering calculations as a function of incident angle
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* Yield increases with the
incident angle, as
expected, BUT ...

* There seems to be no
simple functional form to
fit the angular
dependence.

* At high polar angles the
yield decreases (very
glancing incidence
becomes ineffective)
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Near future calculations:

- calculation for additional angles
- to evaluate role of the surface topology, build several different surfaces and re-calculate.
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Impacts produce a variety of ejected carbon complexes

case I: 50eV at0° 1.55% - 31 C ejected case II: 100¢eV at 0°, 1.30% —> 26 C ejected
20 20
15 15
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0 0 I
C C, C; CH C,HC,H, C C, C; CHC,HC,H,
carbon complex carbon complex

No observation of “methane” formed directly by impact/chemical sputtering

* No CH,;/CH, on the surface

* CT, could form/eject much later on, on the surface or directly above the surface =»
use chemical kinetics code to evaluate this possibility.




Summary and future work

CARBON SPUTTERING YIELDS:

- MD calculations using REBO potential include both
physical and chemical effects.

- Calculated sputtering and reflection for graphite
- Constructed amorphous C:H sample for MD sputtering
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- Obtained sputtered species and erosion rates for
amorphous C
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* First sputtering calculations at energies above 35 eV
- First study as a function of incident polar angle

Future calculations:

- Sample energy and angle more finely
- Sample surface temperature

- Sample surface topology

- Sample target content of H/D/T

| |

Provide sputtering/reflection/sticking tables as input for near-
surface chemistry/plasma codes

.. cyield.




